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Abstract—An approach to the analysis and design of continuous 

T-S fuzzy control system is proposed in this paper. The fuzzy 

logic controller has two consequents in each rule. They are 

numerator part and denominator part and are equivalent to any 

proper practical controller. It is shown that the overall closed-

loop system behaves like an uncertain polytope of polynomials 

and the system stability can be checked by using some graphical 

robust stability criteria. The complex process on finding a 

common Lyapunov function to guarantee the system stability 

can be omitted. An illustrative example will be given to 

demonstrate the ability of the design procedure in the proposed 

approach. 
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I.  INTRODUCTION 

Among various fuzzy modelling themes [1], the Takagi-
Sugeno (T-S) model [2] has been one of the most popular 
modeling frameworks. T-S fuzzy models can be as universal 
approximator, then any smooth nonlinear control systems can 
be approximated by T-S fuzzy models. Different feedback 
control schemes can be applied to T-S fuzzy models. The most 
commonly used control law is based on the so-called parallel 
distributed compensation (PDC) concept [3-5] for which the 
fuzzy controller shares the same fuzzy rules and sets as the T-
S fuzzy model. According to the principle of PDC, a linear 
controller is designed for each local linear plant to ensure 
stability and desired performance of the local linear closed 
loop system using methods from the linear control theory, thus 
compensating a corresponding conclusion in the rules of T-S 
plant model. The final nonlinear control is a fuzzy blending of 
the individual rules control actions. A sufficient condition to 
ensure the stability of the overall system is obtained by finding 
a common Lyapunov function which can satisfy all fuzzy sub-
systems. The main method to find the common Lyapunov 
function is solving the linear matrix inequalities (LMIs) by 
using numerical technique [6]. The main drawbacks of PDC 
design approach are the difficulty in finding the common 
Lyapunov function for the large number of fuzzy subsystems 
and the complex calculations without guaranteeing a solution. 
To overcome these weaknesses, a new fuzzy logic controller 
is proposed in [7], which has two consequents in each rule: a 
numerator part and a denominator part. Besides, the 
coefficients of both numerator and denominator are computed 
such that the overall closed-loop systems be haves like linear 
system. There are some limitations in applying the above 
proposed concept for continuous time systems. The first is that 

the feedback controller is not proper, it leads to PD-type or 
PID compensators, which have infinite bandwidth, whereas 
real components and compensators always have finite 
bandwidth. The second reason is that the perfect desired 
closed-loop system can be obtained if and only if all order 
derivatives of the system output (or all the states) are sensed 
and feed them back. In reality, only the system output and 
some certain its derivatives are measurable. Consequently, 
any practical compensator must rely only on system outputs, 
inputs and a few their derivatives.  

In this paper, a new method of T-S fuzzy continuous-time 
system analysis and design is proposed. This is extension of 
the concept in [7] with some modifications to overcome the 
above limitations. 

II. MODIFIED TAKAGI-SUGENO FUZZY MODEL 

AND SYSTEM STABILITY ANALYSIS 

The fuzzy model is described by differential equation, not 

by state equation as in the common T-S model. The ith fuzzy 

IF-THEN rule for describing nth order plant is of the 

following form: 

Plant model Rule 𝑅𝑖: 

IF 𝑧1(𝑡) is 𝑀1
𝑖  and … and 𝑧𝑝(𝑡) is 𝑀𝑝

𝑖  

THEN 𝑦(𝑛)(𝑡) = −𝑎𝑛−1
𝑖 𝑦(𝑛−1)(𝑡) − ⋯ − 𝑎0

𝑖 𝑦(𝑡) +

𝑏𝑚
𝑖 𝑢(𝑚)(𝑡) + ⋯ + 𝑏0

𝑖 𝑢(𝑡)     

                              (1)  

where 𝑅𝑖 denotes the ith fuzzy inference rule, r is the number 

of inference rules, 𝑚 ≤ 𝑛 , 𝑀𝑗
𝑖 ,with 𝑖 ∈ Ω𝑖  and 𝑗 ∈ Ω𝑝 , are 

the fuzzy sets, 𝑢  and 𝑦  are input and output of the plant, 

respectively, 𝑎𝑛−1
𝑖 , … , 𝑎0

𝑖  and 𝑏𝑚
𝑖 , 𝑏𝑚−1

𝑖 , … , 𝑏0
𝑖  are 

coefficients of the linear differential equation. The vector of 

premise variables is defined as 𝑧(𝑡) = [𝑧1(𝑡) … 𝑧𝑝(𝑡)].  

Using the center-of-gravity method for defuzzification, 

the T-S fuzzy model (1) can be represented in the following 

compact form: 

𝑦(𝑛)(𝑡) = − ∑ ℎ𝑖 (𝑧)

𝑟

𝑖=1

𝑎𝑛−1
𝑖 𝑦(𝑛−1)(𝑡) − ⋯

− ∑ ℎ𝑖(𝑧)

𝑟

𝑖=1

𝑎0
𝑖 𝑦(𝑡) + ∑ ℎ𝑖 (𝑧)

𝑟

𝑖=1

𝑏𝑚
𝑖 𝑢(𝑚)(𝑡)

+ ⋯ + ∑ ℎ𝑖 (𝑧)

𝑟

𝑖=1

𝑏0
𝑖 𝑢(𝑡) 

      (2) 



where the normalized membership function ℎ𝑖 (𝑧) is defined 

as: 

ℎ𝑖(𝑧) =
𝜔𝑖(𝑧)

∑ 𝜔𝑖(𝑧)𝑟
𝑖=1

, 𝜔𝑖(𝑧) = ∏ 𝜇𝑗
𝑖 (𝑧𝑗)

𝑝

𝑗=1

, 𝑖

∈ Ω𝑟 

 

           

(3) 

The grades of membership of the premise variables in the 

respective fuzzy set 𝑀𝑗
𝑖  are given as 𝜇𝑗

𝑖 (𝑧𝑗). Note that the 

normalized membership functions satisfy the following 
convex sum property: 

0 ≤ ℎ𝑖(𝑧) ≤ 1, ∑ ℎ𝑖 (𝑧)

𝑟

𝑖=1

= 1 
                                                       

(4) 

According to the premise of each rule of the T-S fuzzy 

plant model, the PDC design technique derives a control rule 

under the same premise. However, there are two consequents 

in the consequent part of each control rule of the FLC: a 

numerator part and a denominator part of the control signal 

[7]. Assume that the reference signal 𝑟(𝑡) = 𝑟 is a constant 

and the error 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) is an input to the controller. 

Control Rule 𝑅𝑖:   

IF 𝑧1(𝑡) is 𝑀1
𝑖  and … and 𝑧𝑝(𝑡) is 𝑀𝑝

𝑖  

THEN 𝑛𝑢𝑚 𝑢(𝑡) = −𝑏𝑚
𝑖 𝑢(𝑚)(𝑡) − ⋯ − 𝑏1

𝑖 𝑢′(𝑡) −

𝑐𝑚1
𝑖 𝑦(𝑚1)(𝑡) … − 𝑐0

𝑖 𝑦(𝑡) + 𝑐0
𝑖 𝑟    

𝑑𝑒𝑛 𝑢(𝑡) = 𝑏0
𝑖 ,            (5) 

where 𝑛𝑢𝑚 𝑢(𝑡)  is the numerator of 𝑢(𝑡) , 𝑑𝑒𝑛 𝑢(𝑡) is the 

denominator of 𝑢(𝑡). 

Remark. The proposed local control rule 

𝑢(𝑡)

=
−𝑏𝑚

𝑖 𝑢(𝑚)(𝑡) − ⋯ − 𝑏1
𝑖 𝑢′(𝑡) − 𝑐𝑚1

𝑖 𝑦(𝑚1)(𝑡) … − 𝑐0
𝑖 𝑦(𝑡) + 𝑐0

𝑖 𝑟

𝑏0
𝑖  

is equivalent to realization of the following controller transfer 

function 

𝐶𝑖(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
=

𝑐𝑚1
𝑖 𝑠𝑚1 + 𝑐𝑚1−1

𝑖 𝑠𝑚1−1 + ⋯ + 𝑐0
𝑖

𝑏𝑚
𝑖 𝑠𝑚 + 𝑏𝑚−1

𝑖 𝑠𝑚−1 + ⋯ + 𝑏0
𝑖  

where 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡).  

Following the control rule in [7], 𝑚1 must be equal to 

𝑛 so then the controller transfer function is not proper. It is 

required here only that 𝑚1 ≤ 𝑚.  

The inferred output of the proposed FLC is 

𝑢(𝑡) =
𝑛𝑢𝑚[𝑢(𝑡)]

𝑑𝑒𝑛[𝑢(𝑡)]

=
− ∑ ℎ𝑖(𝑧)𝑏𝑚

𝑖 𝑢(𝑚)(𝑡) −𝑟
𝑖=1 … − ∑ ℎ𝑖(𝑧)𝑏1

𝑖 𝑢′(𝑡)𝑟
𝑖=1

∑ ℎ𝑖 (𝑧)𝑏0
𝑖𝑟

𝑖=1

+
− ∑ ℎ𝑖 (𝑧)𝑐𝑚1

𝑖 𝑦(𝑚1)(𝑡)𝑟
𝑖=1 + ⋯ − ∑ ℎ𝑖 (𝑧)𝑐0

𝑖 𝑦(𝑡) +𝑟
𝑖=1 ∑ ℎ𝑖(𝑧)𝑐0

𝑖 𝑟𝑟
𝑖=1

∑ ℎ𝑖 (𝑧)𝑏0
𝑖𝑟

𝑖=1

 

(6) 

Substituting this control signal into the T-S fuzzy plant 

model of (2), the closed-loop fuzzy control system becomes: 

𝑦(𝑛)(𝑡) = − ∑ ℎ𝑖(𝑧)𝑎𝑛−1
𝑖 𝑦(𝑛−1)(𝑡)

𝑟

𝑖=1

− ⋯

− ∑ ℎ𝑖(𝑧)𝑎0
𝑖 𝑦(𝑡)

𝑟

𝑖=1

+ ∑ ℎ𝑖 (𝑧)𝑏𝑚
𝑖 𝑢(𝑚)(𝑡)

𝑟

𝑖=1

+ ⋯ + ∑ ℎ𝑖(𝑧)𝑏0
𝑖 𝑢(𝑡)

𝑟

𝑖=1

= − ∑ ℎ𝑖 (𝑧)𝑎𝑛−1
𝑖 𝑦(𝑛−1)(𝑡)

𝑟

𝑖=1

− ⋯

− ∑ ℎ𝑖(𝑧)𝑎0
𝑖 𝑦(𝑡)

𝑟

𝑖=1

+ ∑ ℎ𝑖 (𝑧)𝑏𝑚
𝑖 𝑢(𝑚)(𝑡)

𝑟

𝑖=1

+ ⋯ + ∑ ℎ𝑖(𝑧)𝑏1
𝑖 𝑢′(𝑡)

𝑟

𝑖=1

− ∑ ℎ𝑖(𝑧)𝑏𝑚
𝑖 𝑢(𝑚)(𝑡)

𝑟

𝑖=1

− ⋯

− ∑ ℎ𝑖(𝑧)𝑏0
𝑖 𝑢′(𝑡)

𝑟

𝑖=1

− ∑ ℎ𝑖(𝑧)𝑐𝑚1
𝑖 𝑦(𝑚1)(𝑡)

𝑟

𝑖=1

+ ⋯

− ∑ ℎ𝑖(𝑧)𝑐0
𝑖 𝑦(𝑡)

𝑟

𝑖=1

+ ∑ ℎ𝑖(𝑧)𝑐0
𝑖 𝑟

𝑟

𝑖=1

= − ∑ ℎ𝑖 (𝑧)𝑎𝑛−1
𝑖 𝑦(𝑛−1)(𝑡)

𝑟

𝑖=1

− ⋯

− ∑ ℎ𝑖(𝑧)(𝑎𝑚1
𝑖 + 𝑐𝑚1

𝑖 )𝑦(𝑚1)(𝑡)

𝑟

𝑖=1

− ⋯

− ∑ ℎ𝑖(𝑧)(𝑎0
𝑖 + 𝑐0

𝑖 )𝑦(𝑡)

𝑟

𝑖=1

+ ∑ ℎ𝑖 (𝑧)𝑐0
𝑖 𝑟

𝑟

𝑖=1

 

      (7) 

The closed-loop system characteristic equation is of the 
following form: 

𝑠𝑛 + ∑ ℎ𝑖 (𝑧)𝑎𝑛−1
𝑖 𝑠𝑛−1

𝑟

𝑖=1

+ ⋯ + ∑ ℎ𝑖 (𝑧)(𝑎𝑚1
𝑖 + 𝑐𝑚1

𝑖 )𝑠𝑚1

𝑟

𝑖=1

+ ⋯ + ∑ ℎ𝑖(𝑧)(𝑎0
𝑖 + 𝑐0

𝑖 )

𝑟

𝑖=1

= 0 

0 ≤ ℎ𝑖(𝑧) ≤ 1, 𝑖 = 1, … , 𝑟, ∑ ℎ𝑖 (𝑧)

𝑟

𝑖=1

= 1 

      (8) 

The left side of the equation (8) is the characteristic 

polynomial and in fact, it is the polytope of polynomials: 



𝐻(𝑠) = 𝑠𝑛 + ∑ ℎ𝑖(𝑧)𝑎𝑛−1
𝑖 𝑠𝑛−1

𝑟

𝑖=1

+ ⋯

+ ∑ ℎ𝑖 (𝑧)(𝑎𝑚1
𝑖 + 𝑐𝑚1

𝑖 )𝑠𝑚1

𝑟

𝑖=1

+ ⋯

+ ∑ ℎ𝑖 (𝑧)(𝑎0
𝑖 + 𝑐0

𝑖 )

𝑟

𝑖=1

= ∑ ℎ𝑖(𝑧)𝐻𝑖(𝑧)

𝑟

𝑖=1

 

      (9) 

0 ≤ ℎ𝑖(𝑧) ≤ 1, 𝑖 = 1, … , 𝑟, ∑ ℎ𝑖 (𝑧)

𝑟

𝑖=1

= 1 

where 

𝐻𝑖(𝑠) = 𝑠𝑛 + 𝑎𝑛−1
𝑖 𝑠𝑛−1 + ⋯ + (𝑎𝑚1

𝑖 + 𝑐𝑚1
𝑖 )𝑠𝑚1 + ⋯

+ (𝑎0
𝑖 + 𝑐0

𝑖 ) 

    (10) 

That is different in compared with a certain characteristic 

linear polynomial in [7].  

Therefore, the system stability analysis can be done by 

using the robust stability criteria derived in [8-9], what 

requires to check 
𝑟(𝑟−1)

2
 polynomial segments to Hurwitz and 

the testing stability of an edge 𝜆𝐻𝑖(𝑠) + (1 − 𝜆)𝐻𝑗(𝑠) can be 

made by Nyquist test: the plot 𝑧(𝑗𝜔) =
𝐻𝑖(𝑗𝜔)

𝐻𝑗(𝑗𝜔)
 should not 

intersect negative real semi axis. 

Theorem 1: The fuzzy control system (1), (5) is stable if and 
only if 

- The polynomials 𝐻𝑖 (𝑠), 𝑖 = 1, … , 𝑟 are stable, 

- All 
𝑟(𝑟−1)

2
 plot 𝑧𝑖𝑗(𝑗𝜔) =

𝐻𝑖(𝑗𝜔)

𝐻𝑗(𝑗𝜔)
, 𝑖, 𝑗 = 1, … , 𝑟, 𝑖 < 𝑗 

do not intersect negative real semi axis. 

III. ROBUST FUZZY PDC CONTROL OF 

NONLINEAR PLANT 

Suppose that by carrying the experiments or the physical 

analysis of the plant, the local models in different operation 

points are obtained in form (1) with 𝑚 < 𝑛. For each local 

plant model, the general optimal local controller is derived as 

follows: 

Control rule 𝑅𝑖: IF 𝑧1(𝑡) is 𝑀1
𝑖  and … and 𝑧𝑝(𝑡) is 𝑀𝑝

𝑖  

THEN 𝑛𝑢𝑚 𝑢(𝑡) = −𝑢(𝑛1)(𝑡) − 𝑑𝑛1−1
𝑖 𝑢(𝑛1−1)(𝑡) − ⋯ −

𝑑𝑚1
𝑖 𝑢′(𝑡) − 𝑐𝑚1

𝑖 𝑦(𝑚1)(𝑡) − ⋯ − 𝑐0
𝑖 𝑦(𝑡) + 𝑐0

𝑖 𝑟  

𝑑𝑒𝑛 𝑢(𝑡) =  𝑑0
𝑖 ,                                                  (11) 

 where 𝑚1 < 𝑛1. 

Remark. In deed, the above rule consequent is equivalent to 
the following controller transfer function 

𝐶𝑖(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
=

𝑐𝑚1
𝑖 𝑠𝑚1 + ⋯ + 𝑐0

𝑖

𝑠𝑛1 + 𝑑𝑛1−1
𝑖 𝑠𝑛1−1 + ⋯ + 𝑑0

𝑖  

          (12) 

The problem is to check the stability of the overall closed-

loop system (1), (11). 

Note that the consequent of the local plant model rule (1) 

describes the local transfer function 

𝑃𝑖(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

𝑏𝑚
𝑖 𝑠𝑚 + 𝑏𝑚−1

𝑖 𝑠𝑚−1 + ⋯ + 𝑏0
𝑖

𝑠𝑚 + 𝑎𝑛−1
𝑖 𝑠𝑛−1 + ⋯ + 𝑎0

𝑖  

and they are equivalent to the following augmented transfer 
function 

𝑃𝑖
∗(𝑠) =

𝑌(𝑠)

𝑈(𝑠)

=
𝑏𝑚

𝑖 𝑠𝑚 + 𝑏𝑚−1
𝑖 𝑠𝑚−1 + ⋯ + 𝑏0

𝑖

𝑠𝑚 + 𝑎𝑛−1
𝑖 𝑠𝑛−1 + ⋯ + 𝑎0

𝑖 .
𝑠𝑛1 + 𝑑𝑛1−1

𝑖 𝑠𝑛1−1 + ⋯ + 𝑑0
𝑖

𝑠𝑛1 + 𝑑𝑛1−1
𝑖 𝑠𝑛1−1 + ⋯ + 𝑑0

𝑖  

    (13) 
Similarly, the local controller transfer function can be 

augmented as follows: 

𝐶𝑖
∗(𝑠) =

𝑈(𝑠)

𝐸(𝑠)

=
𝑐𝑚1

𝑖 𝑠𝑚1 + ⋯ + 𝑐0
𝑖

𝑠𝑛1 + 𝑑𝑛1−1
𝑖 𝑠𝑛1−1 + ⋯ + 𝑑0

𝑖 .
𝑏𝑚

𝑖 𝑠𝑚 + ⋯ + 𝑏0
𝑖

𝑏𝑚
𝑖 𝑠𝑚 + ⋯ + 𝑏0

𝑖  

Therefore, the following results can be obtained. 

Lemma 1. The local plant model (1) is equivalent to the 

following model 

Plant model Rule 𝑅𝑖: IF 𝑧1(𝑡) is 𝑀1
𝑖  and … and 𝑧𝑝(𝑡) is 

𝑀𝑝
𝑖  

THEN 

𝑦(𝑛+𝑛1)(𝑡) = −(𝑑𝑛1−1
𝑖 + 𝑎𝑛−1

𝑖 )𝑦(𝑛+𝑛1−1)(𝑡) − ⋯

− (𝑎1
𝑖 𝑑0

𝑖 + 𝑎0
𝑖 𝑑1

𝑖 )𝑦′(𝑡) − 𝑎0
𝑖 𝑑0

𝑖 𝑦(𝑡)

+ 𝑏𝑚
𝑖 𝑢(𝑚+𝑛1)(𝑡) + ⋯

+ (𝑏1
𝑖 𝑑0

𝑖 + 𝑏0
𝑖 𝑑1

𝑖 )𝑢′(𝑡) + 𝑏0
𝑖 𝑑0

𝑖 𝑢(𝑡) 

    (14)  

Lemma 2. The local controller model (11) is equivalent to 

the following model 

Control Rule 𝑅𝑖: IF 𝑧1(𝑡) is 𝑀1
𝑖  and … and 𝑧𝑝(𝑡) is 𝑀𝑝

𝑖  

THEN 𝑛𝑢𝑚 𝑢(𝑡) = −𝑏𝑚
𝑖 𝑢(𝑚+𝑛1)(𝑡) − ⋯ − (𝑏1

𝑖𝑑0
𝑖 +

𝑏0
𝑖 𝑑1

𝑖 )𝑢′(𝑡) − 𝑐𝑚1
𝑖 𝑏𝑚

𝑖 𝑦(𝑚1+𝑚)(𝑡) − ⋯ − (𝑏1
𝑖 𝑐0

𝑖 +

𝑏0
𝑖 𝑐1

𝑖 )𝑦′(𝑡) − 𝑏0
𝑖 𝑐0

𝑖 𝑦(𝑡) + 𝑏0
𝑖 𝑐0

𝑖 𝑟 

𝑑𝑒𝑛 𝑢(𝑡) = 𝑏0
𝑖 𝑑0

𝑖 ,         (15) 

It is not difficult to derive the dynamical equation of the 

fuzzy closed-loop systems (14), (15) as follows: 

𝑦(𝑛+𝑛1)(𝑡) = − ∑ ℎ𝑖 (𝑧)(𝑑𝑛1−1
𝑖 + 𝑎𝑛−1

𝑖 )𝑦(𝑛+𝑛1−1)(𝑡)

𝑟

𝑖=1

− ⋯

− ∑ ℎ𝑖 (𝑧)(𝑎𝑚+𝑚1
𝑖 + 𝑐𝑚1

𝑖 𝑏𝑚
𝑖 )𝑦(𝑚+𝑚1)(𝑡)

𝑟

𝑖=1

− ∑ ℎ𝑖 (𝑧)(𝑎0
𝑖 𝑑0

𝑖 + 𝑏0
𝑖 𝑐0

𝑖 )𝑦(𝑡)

𝑟

𝑖=1

+ ∑ ℎ𝑖 (𝑧)𝑏0
𝑖 𝑐0

𝑖 𝑟

𝑟

𝑖=1

 

           (16) 

The system characteristic polynomial becomes 



𝐻(𝑠) = 𝑠𝑛+𝑛1 + ∑ ℎ𝑖(𝑧)(𝑑𝑛1−1
𝑖 + 𝑎𝑛−1

𝑖 )𝑠𝑛+𝑛1−1

𝑟

𝑖=1

+ ⋯

+ ∑ ℎ𝑖(𝑧)(𝑎0
𝑖 𝑑0

𝑖 + 𝑏0
𝑖 𝑐0

𝑖 )

𝑟

𝑖=1

 

    (17) 

Denote 

𝐻𝑖(𝑠) = 𝑠𝑛+𝑛1 + (𝑑𝑛1−1
𝑖 + 𝑎𝑛−1

𝑖 )𝑠𝑛+𝑛1−1 + ⋯

+ (𝑎0
𝑖 𝑑0

𝑖 + 𝑏0
𝑖 𝑐0

𝑖 ), 𝑖 = 1, … , 𝑟 

    (18) 

Theorem 2. The fuzzy closed-loop system (1), (11) is stable 

if and only if the polytope of polynomials 

𝐻(𝑠) = ∑ ℎ𝑖(𝑧)𝐻𝑖(𝑧)

𝑟

𝑖=1

, 0 ≤ ℎ𝑖 (𝑧) ≤ 1, ∑ ℎ𝑖(𝑧)

𝑟

𝑖=1

= 1 

  

   (19) 

is robust stable. 

The robust stability of the family (19) can be done by 

applying the Theorem 1. 

IV. EXAMPLE 

Consider the example of PDC-based FLC for temperature 

in [10]. The plant is a laboratory dryer. The air temperature y 

is controlled by changing the voltage u to a Pulse-Width 

Modulator (PWM) thus varying the duty ratio of switching of 

an electrical heater and a fan. It is able to distinguish three 

overlapping linearization zones: Zone (1) for 𝑦 = 20 ÷

50𝑜𝐶, Zone (2) for 𝑦 = 40 ÷ 57𝑜𝐶, Zone (3) for 𝑦 = 50 ÷

80𝑜𝐶. In each zone a plant model. 

𝑃𝑖(𝑠) =
𝐾 𝑖

(𝑇1
𝑖(𝑠) + 1)(𝑇2

𝑖(𝑠) + 1)(𝑠 + 1)
, 𝑖 = 1,2,3 

is obtained by carrying experimental and optimized using GA 

algorithm. 

The optimal PI controllers of the following form 

𝐶𝑖(𝑠) = 𝑘𝑃
𝑖 +

𝑘𝐼
𝑖

𝑠
=

𝑘𝑃
𝑖 𝑠 + 𝑘𝐼

𝑖

𝑠
, 𝑖 = 1,2,3 

are designed for each local plant model in each zone. The 

plant model parameters and controller parameters are shown 

in Tab. 1 [7].  

TABLE I.  THE SYSTEM PARAMETERS 

𝑖 𝐾𝑖  𝑇1
𝑖  𝑇2

𝑖 𝑘𝑃
𝑖  𝑘𝐼

𝑖 

1  13.71 57.3 11.6 0.27 0.0027 

2 12.2 96.5 15.4 0.36 0.003 

3 8.3 49.1 2.5 0.83 0.00415 

 
To check the stability of the designed global nonlinear 

system, it is necessary to turn the plant model and PI 

controller description into a state space representation and 

solve six LMIs. This complexity can be reduced using 

Theorem 2. It is clear that the examining example can be 

considered as the T-S fuzzy system (1), (11) where: 𝑚 =
0, 𝑛 = 3, 𝑚1 = 𝑛1 = 1, and 

𝑎2
𝑖 =

𝑇1
𝑖𝑇2

𝑖 + 𝑇1
𝑖 + 𝑇2

𝑖

𝑇1
𝑖𝑇2

𝑖 , 𝑎1
𝑖 =

𝑇1
𝑖 + 𝑇2

𝑖 + 1

𝑇1
𝑖𝑇2

𝑖 , 𝑎0
𝑖 =

1

𝑇1
𝑖𝑇2

𝑖 , 𝑏0
𝑖

=
𝐾𝑖

𝑇1
𝑖𝑇2

𝑖 , 𝑐0
𝑖 = 𝑘𝐼

𝑖 , 𝑐1
𝑖 = 𝑘𝑃

𝑖 , 𝑑0
𝑖 = 0, 𝑑1

𝑖 = 1 

Following (19), the family of system characteristic 

polynomials has the following form: 

𝐻(𝑠) = ∑ ℎ𝑖 (𝑧)𝐻𝑖(𝑧)

3

𝑖=1

 

𝐻𝑖(𝑠) = 𝑠4 + 𝑎2
𝑖 𝑠3 + 𝑎1

𝑖 𝑠2 + (𝑎2
𝑖 + 𝑘𝑃

𝑖 𝑏0
𝑖 )𝑠 

where 

0 ≤ ℎ𝑖(𝑧) ≤ 1, 𝑖 = 1, … , 𝑟, ∑ ℎ𝑖 (𝑧)

𝑟

𝑖=1

= 1 

The Mikhailop plots of the polynomials 𝐻𝑖(𝑠), 𝑖 = 1,2,3 

are shown in Fig. 1 and the Nyquist plots 

𝑧12(𝑗𝜔), 𝑧13 (𝑗𝜔), 𝑧23(𝑗𝜔) are shown in Fig.2. According to 

Theorem 1, the overall fuzzy system is stable. 

 
a) 

 
b) 

Figure 1. The Mikhailop plots: a) starts on the positive real 

semi-axis, does not hit the origin; b) successively generates 

an anti-clockwise motion through n quadrants. 



 
Figure 2. The plots 𝑧12 (𝑗𝜔), 𝑧13(𝑗𝜔), 𝑧23(𝑗𝜔) 

V. CONCLUSION 

This paper proposes a new method for the stability 
analysis and design of continuous T-S fuzzy model-based 

systems. The proposed method is the extension of the derived 

concept in [7], which is suitable only for discontinuous 

systems, where it is not required the proper characteristic of 

controller. Based on the new proposed method, the closed-

loop T-S fuzzy control system behaves like a polytope of 

linear systems and the system stability can be easily checked 
by using some graphical robust stability criteria, without 

applying a complex process to find a common Lyapunov 

function as in the existing approaches. The number of plots 

that is 
𝑟(𝑟−1)

2
 in comparing with 

𝑟(𝑟+1)

2
 LMIs needs to be 

solved. The proposed design method is applied to design 

FLCs for a temperature control system, where the PI 

controllers are used for local systems. The overall system 

stability is then checked by proposed criterium in the paper. 
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